Oberstufe

Analysis | Grundlagen der Funktionsanalyse

Die Analysis beschäftigt sich mit Funktionen. Die aus mathematischer Sicht interessantesten Punkte sind unter dem Oberbegriff „Funktionsanalyse“ bzw. „Kurvendiskussion“ zusammengefasst. Darin enthalten sind Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendepunkte, evtl. noch Asymptoten. Als sehr wichtiges Hilfsmittel benötigt man die Ableitungen (=Differenzial) und das Aufleiten, welches korrekt Integrieren heißt oder Stammfunktion bilden. Dementsprechend redet man auch Differentialrechnung bzw. Integralrechnung. In diesem Hauptkapitel „Analysis-Grundlagen der Funktionsanalyse“ beschäftigen wir uns mit all diesen wichtigen und ganz wichtigen Grundlagen.

 

Das war eine kurze Einführung in dieses Thema.
Damit du es komplett verstehst, schau dir hier weitere verständlich erklärte Mathe-Videos an:

 

[A.11] Was bedeuten eigentlich die Funktionen in der Analysis?

In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man „x“ einsetzt erhält man verschiedene anschauliche Bedeutungen.

 

[A.12] Nullstellen und Gleichungen lösen

Gleichungen lösen kann man, indem man mit dem Nenner multipliziert (den Nenner „wegmacht“) und alles auf eine Seite bringt (gleich Null setzt). Ab jetzt berechnet man sozusagen Nullstellen von einer „neuen Funktion“. Nullstellen sind Schnittpunkte mit der x-Achse. Man kann Nullstellen berechnen mit anhand von vier Möglichkeiten: a) ausklammern, b) Mitternachtsformel anwenden (p-q-Formel oder a-b-c-Formel), c) substituieren, d) Polynomdivision bzw. Horner-Schema anwenden.

 

[A.13] So macht man die Ableitung f(x) einer Funktion

Die Ableitung einer Funktion f(x) gibt die Steigung bzw. die Tangentensteigung an. Bei anwendungsbezogenen Aufgaben ist die Ableitung die Zunahme bzw. die Abnahme (je nach Vorzeichen). Es gibt drei wichtige Regeln für die Ableitung: Kettenregel, Quotientenregel, Produktregel. Mit allen kann man ableiten. Fast jeder Funktionstyp hat eine andere Ableitungsregel, d.h. man muss die verschiedenen Ableitungsregeln von Polynomen, Exponentialfunktionen, sin- und cos-Funktionen kennen. Bemerkung: „Ableiten“ nennt man auch „Differenzieren“

 

[A.14] Stammfunktion, Integral und wie man damit rechnet

Die Stammfunktion einer Funktion braucht man, um diverse Flächen zu berechnen. Bei anwendungsbezogenen Aufgaben ist Stammfunktion meist eine Gesamtmenge (z.B. wenn f(x) die Anzahl von Würstchen beschreibt, die eine Imbissbude verkauft, ist die Stammfunktion die Gesamtanzahl aller Würstchen vom Zeitpunkt A bis zum Zeitpunkt B). Fast jeder Funktionstyp hat andere Regeln zur Bildung der Stammfunktion, d.h. man muss die verschiedenen Regeln für Polynome, Exponentialfunktionen, sin- und cos-Funktionen kennen. Bemerkung: „Stammfunktion bilden“ ist mehr oder weniger das Gleiche wie „integrieren“ oder „Integral bilden“.

 

[A.15] Tangenten und Normale

Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente ist die Ableitung der Funktion, in welche der x-Wert des Berührpunktes eingesetzt werden muss. Eine Normale steht senkrecht (orthogonal) auf der Tangente und ist damit eine Lotgerade der Tangente bzw. der Normale. Die Steigung der Normalen ist der negative Kehrwert der Tangentensteigung (m1=-1/m2). (Man sagt dazu auch: Die beiden Steigungen sind negativ reziprok.)

 

[A.16] Asymptote und Grenzwert berechnen

Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote. Waagerechte oder schiefe Asymptoten sind mehr oder weniger das Gleiche wie ein Grenzwert.

 

[A.17] Symmetrie von Funktionen

Funktionen können zwei Typen von Symmetrie aufweisen: Punktsymmetrie oder Achsensymmetrie zu einer senkrechten Achse. (Eine Funktion kann zu waagerechten Geraden nicht symmetrisch sein!)

 

[A.18] Flächenberechnung; Flächeninhalt berechnen mit Integral

Will man den Flächeninhalt berechnen, z.B. bei der Flächenberechnung von Schaubildern, dann kommen Integrale ins Spiel. Die Integralberechnung zählt zu den wichtigen Themen der Mathematik. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.

 

[A.19] Funktionsanalyse / Kurvendiskussion Beispielaufgaben

Hier lernen Sie Schritt für Schritt, wie man eine Kurvendiskussion bzw. eine Funktionsanalyse durchführt und wie man die Eigenschaften einer Funktion errechnet. Zu diesen gehören: Nullstellen, Hochpunkte, Tiefpunkte, Wendepunkte und asymptotisches Verhalten.